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Abstract. Via explicit diagonalization of the chiralSU(N)2 fusion matrices, we discuss the
possibility of representing the fusion ring of the chiralSU(N) models, at levelK = 2, by a
polynomial ring in a single variable whenN is odd and by a polynomial ring in two variables
whenN is even.

1. Introduction

Six years ago, Gepner conjectured that the fusion ring of theories with theSU(N) current
algebra is isomorphic to a ring inN − 1 variables associated with the fundamental
representations, quotiented by an ideal of constraints that derive from a potential [1].

Four years ago, Di Francesco and Zuber postulated a necessary and sufficient condition
for a one-variable polynomial ring [2]: assume that among the matricesNi, i = 1, . . . , n,
there exists at least one, call itNf , with non-degenerate eigenvalues. Thus, any otherNi
may be diagonalized in the same basis asNf and there exists a unique polynomialPi(x)
of degree at mostn− 1 such that its eigenvaluesγ (l)i satisfy

γ
(l)
i = Pi(γ (l)f ) (1)

Pi being given by the Lagrange interpolation formula. Therefore, anyNi may be written as

Ni = Pi(Nf ) (2)

with a polynomialPi ; as bothNi andNf have integral entries,Pi(x) must have rational
coefficients.

The n× n matrix Nf , on the other hand, satisfies its characteristic equationP(x) = 0,
which is also its minimal equation, asNf has no degenerate eigenvalues. The constraint on
Nf is thus

P(Nf ) = 0 (3)

that may of course be integrated to yield a ‘potential’W(x), which is a polynomial of
degreen + 1. In this way, Di Francesco and Zuber characterized the rational conformal
field theories (RCFTs) which have a description in terms of a fusion potential in one variable.
Moreover, they have also proposed a generalized potential to describe other theories. In [3]
Aharony determined a simple criterion for a generalized description of RCFTs by fusion
potentials in more than one variable.

In this paper we tackle this problem and discuss the possibility of representing the fusion
rings of the chiralSU(N)2 models by polynomial rings in two variables. Exploiting the
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Di Francesco and Zuber condition, we show that these polynomial rings in two variables
are reduced to polynomial rings in a single variable in the cases for whichN is odd (or
N = 2).

In section 2 we discuss some algebraic setting of the chiral RCFTs. Section 3 describes
the primary fields of the chiralSU(N) models, at levelK = 2, in cominimal equivalence
classes. In section 4 we report a computer study which diagonalizes the fusion matrices of
the chiralSU(N)2 models and gives their polynomial rings in one and two variables.

2. Fusion algebras

Fusion algebras are found to play an important role in the study of RCFTs. In addition,
the fusion rules can be expressed in terms of the unitary matrixS [4] which encodes the
modular transformations of the characters of the RCFT

Nk
ij =

∑
l

Sil

S0l
SjlS

∗
kl . (4)

Here ‘0’ refers to the identity operator, and the labelsi, . . . , l run over n values
corresponding to the primary fields of the chiral algebra of the RCFT. There is a more
fundamental reason for seeking representations of the fusion algebra, based on the concept
of operator products [6]. When one tries to compute the operator product coefficients, one
is almost inevitably led to the concept of fusion rules, i.e. the formal products

AiAj =
∑
k

Nk
ijAk (5)

of primary fields describing the basis-independent content of the operator product algebra.
By definition, the fusion rule coefficients possess the property of integralityNk

ij ∈ Z>0.
In addition, they inherit several simple properties:

• symmetry: Nk
ij = Nk

ji ,
• associativity:

∑
k N

k
ijN

m
kl =

∑
k N

k
jlN

m
ik ,

• existence of unit: there is an index ‘0’ (identity operator) such thatNj

i0 = δji , and
• charge conjugation: Nijl =

∑
k N

k
ijCkl = (Nl

ij )
† is completely symmetric in the indices

i, j, l.

Because of these properties, one can interpret the fusion rule coefficients as the structure
constants of a commutative associative ring with a basis given by the primary fields.

The matrixS implements the modular transformationτ → −1/τ and obeysS2 = C.
In addition, the diagonal matrixTii = exp(2iπ(1i − c/24)), where1i is the conformal
dimension of the primary fieldi and c is the central charge, implements the modular
transformationτ → τ + 1 and obeys(ST )3 = C, which implies a relation between the
structure constantsNk

ij and the conformal dimensions1i [7]:

Nijkl(1i +1j +1k +1l) =
∑
r

Nijklr1r (6)

where

Nijkl = Nn
ijN

n
kl and Nijklr = Nr

ijNklr +Nr
jkNilr +Nr

ikNjlr . (7)

It was suggested in [8] that these proprieties fully characterize a RCFT, and that any
commutative ring satisfying these properties is the fusion ring of some RCFT.



Polynomial rings of the chiralSU(N)2 models 8655

The matricesNi defined by(Ni)jk = Nk
ij themselves form a trivial representation of the

fusion algebra

NiNj =
∑
k

Nk
ijNk (8)

as follows from unitarity of the matrixS; this expresses the associativity property of the
algebra (5). The relation (4) implies that the matrixS diagonalizes the matricesNi and
their eigenvalues are of the form

γ
(l)
i =

Sil

S0l
(9)

and obey the sum rules

γ
(l)
i γ

(l)
j =

∑
k

Nk
ij γ

(l)
k . (10)

The general study of these fusion algebras and their classification have been the object
of much work [8–10].

The numbers

di
.= γ (0)i =

Si0

S00
(11)

appear as statistical dimensions of superselection sectors [12, 13] in algebraic quantum
field theory, as square roots of indices for inclusions of von Neumann algebras [14], as
relative sizes of highest weight modules of chiral symmetry algebras in conformal field
theory [4], and in connection with truncated tensor products of quantum groups (see [15]
for an accomplished review). According to equation (10), these numbers obey the statistical
dimension sum rules

didj =
∑
k

Nk
ij dk. (12)

which shows thatdi is a Frobenius eigenvalue ofNi .

3. SU (N )2 cominimal equivalence classes

At the levelK = 2 the central charge of the chiralSU(N) models is given by

c = 2(N − 1)

N + 2
(13)

and their primary fields are identified with the order fieldsσk, k = 0, 1, . . . , N − 1; ZN -
neutral fieldsε(j), j = 1, 2, . . . 6 N/2 and the parafermionic currents9k, k = 1, . . . , N−1,
in the Zamolodchikov–Fateev parafermionic theories [16]. For each primary field we define
a ‘charge’ ν = 0, 1, . . . ,2(N − 1) mod 2N and we collect theN(N + 1)/2 primary
fields in N cominimal equivalence classes[17], [φkk ], k = 0, 1, . . . , N − 1, according to
their statistical dimensions:

dk =
k−1∏
i=0

s(N − i)
s(i + 1)

s(x) = sin

(
xπ

N + 2

)
d0 = 1 dN−k = dk k = 1, 2, . . . , N − 1. (14)

SU(N)2 representations of the order fieldsφkk , k = 1, . . . , N − 1 are the fully
antisymmetric Young tableaux withk boxes (i.e. the reduced tableau which is a column
with k boxes). Tableaux of fields comprising a cominimal equivalence classφkν in which
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the representationφkk appears,(ν = k mod 2, i.e.ν = k, k + 2, . . . ,2N − 2− k), are
obtained by adding(ν − k)/2 rows of width 2 to the top of the reduced tableau ofφkk .
Thereforeφkν is a Young tableau of two columns withν boxes, since(ν+ k)/2 boxes in the
first column and(ν − k)/2 in the second column.

The conformal weights of the fields comprising a cominimal equivalence class in which
the representationφkk appears are simply related to the conformal weight ofφkk by

1k
ν = 1k

k +
ν − k
4N

(2N − ν − k) (15)

and the conformal dimensions of the order fields [16] are given by

1k
k =

k(N − k)
2N(N + 2)

. (16)

These equivalence classes are generated byZN symmetry, connecting the representations
belonging to each class through the fusion rules [18]:

φk1
ν1
× φk2

ν2
=

min(k1+k2,2N−k1−k2)∑
k=|k1−k2|mod 2

φkν1+ν2
. (17)

In particular, the elementary fieldφ1
1, (φ1

1 × φkν = φk−1
ν+1 + φk+1

ν+1) connects the equivalence
class ofφkν with adjacent classes, while the fieldφ0

2, (φ0
2 × φkν = φkν+2), connects the fields

in the same cominimal equivalence class. Thus, theSU(N)2 fusion ring can be generated
by these two fields. For example, the 10 primary fields ofSU(4)2 can be collected in four
cominimal equivalence classes as

φ3
3 → d3 = s(2)

s(1)
↗ ↘

φ2
2 φ2

4 → d2 = s(3)
s(1)

↗ ↘ ↗ ↘
φ1

1 φ1
3 φ1

5 → d1 = s(4)
s(1)

↗ ↘ ↗ ↘ ↗ ↘
φ0

0 φ0
2 φ0

4 φ0
6 → d0 = s(5)

s(1)


. (18)

These cominimal equivalence classes provide a representation of theZ4 symmetry and the
primary fields corresponding to representations in the same class differ only by free fields.

4. SU (N )2 polynomial rings

Let us start by considering the caseSU(4)2 (theSU(2)2 andSU(3)2 cases were considered
in [2]).

The variablesx and y are associated with the fieldsφ1
1 and φ0

2, respectively. Using
φ0

0 = 1, the fusion rules (17) (see equation (18)) give the expressions of the other fields:

φ0
0 = 1 φ1

1 = x φ2
2 = x2− y φ3

3 = x3y − 2xy

φ0
2 = y φ1

3 = xy φ2
4 = x2y − y2

φ0
4 = y2 φ1

5 = xy2

φ0
6 = y3

(19)



Polynomial rings of the chiralSU(N)2 models 8657

and from the identificationφkν = φ4−k
4+ν mod 8 we obtain the following constraints:

x4− 3x2y + y2 = 1 x3y − 2xy2 = x
x2y2− y3 = x2− y x3− 2xy = xy3

y4 = 1.

(20)

These constraints can be combined and reduced to a one-variable constraint

x10− 8x6− 9x2 = 0 (21)

which is equal to the characteristic equation of the fusion matrixNφ1
1
, and its eigenvalue 0

is doubly degenerate, implying thatx may not be inverted on the ring. Similarly, one can
eliminatex from (20) and obtain a one-variable constraint iny:

y10− y8− 2y6+ 2y4+ y2− 1= 0 (22)

which is equal to the characteristic equation of the fusion matrixNφ0
2
, whose eigenvalues

are degenerate. Thus, the fusion ring of theSU(4)2 model can be expressed in terms of two
variables associated with the representationsφ1

1 andφ0
2 which satisfy independent constraint

equations.
Next, let us consider the 15 primary fields of the chiralSU(5)2 model which can be

collected in five cominimal equivalence classes as

φ4
4 → d4 = s(2)

s(1)

↗ ↘
φ3

3 φ3
5 → d3 = s(3)

s(1)

↗ ↘ ↗ ↘
φ2

2 φ2
4 φ2

6 → d2 = s(4)
s(1)

↗ ↘ ↗ ↘ ↗ ↘
φ1

1 φ1
3 φ1

5 φ1
7 → d1 = s(5)

s(1)

↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘
φ0

0 φ0
2 φ0

4 φ0
6 φ0

8 → d0 = s(6)
s(1)



. (23)

The variablesx andy are associated with the fieldsφ1
1 andφ0

2, respectively. Usingφ0
0 = 1,

the fusion rules (17) give the expressions for the other fields:

φ0
0 = 1 φ1

1 = x φ2
4 = x2y − y2

φ0
2 = y φ1

3 = xy φ2
6 = x2y2− y3

φ0
4 = y2 φ1

5 = xy2 φ3
3 = x3− 2xy

φ0
6 = y3 φ1

7 = xy3 φ3
5 = x3y − 2xy2

φ0
8 = y4 φ2

2 = x2− y φ4
4 = x4− 3x2y + y2

(24)

and the identificationφkν = φ5−k
5+ν mod 10 gives us the following constraint equations:

x5− 4x3y + 3xy2 = 1 x2y3− y4 = x3− 2xy

x4y − 3x2y2+ y3 = x x4− 3x2y + y2 = xy4

x3y2− 2xy3 = x2− y y5 = 1.

(25)
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These constraints can be combined and reduced to a one-variable constraint equation

x15− 16x10− 57x5+ 1= 0 (26)

which is equal to the characteristic equation of the fusion matrixNφ1
1
, whose eigenvalues

are non-degenerate. It means thatx may be inverted on the ring: we can eliminatey from
the constraint equations (25) as

y = 1
181(−14x12+ 221x7+ 910x2). (27)

Substituting this value ofy in (24) we will obtain a polynomial ring in a single variable:

P 0
0 (x) = 1 P 1

1 (x) = x
P 0

2 (x) = 1
181(910x2+ 221x7− 14x12) P 1

3 (x) = 1
181(910x3+ 221x8− 14x13)

P 0
4 (x) = 1

181(4592x4+ 1260x9− 79x14) P 1
5 (x) = 1

181(79+ 89x5− 4x10)

P 0
6 (x) = 1

181(404x + 155x6− 9x11) P 1
7 (x) = 1

181(404x2+ 155x7− 9x12)

P 0
8 (x) = 1

181(2043x3+ 597x8− 37x13) P 3
3 (x) = − 1

181(1639x3+ 442x8− 28x13)

P 2
2 (x) = − 1

181(729x2+ 221x7− 14x12) P 3
5 (x) = − 1

181(144+ 66x5− 5x10)

P 2
4 (x) = − 1

181(3682x4+ 1039x9− 65x14) P 4
4 (x) = 1

181(2043x4+ 597x9− 37x14)

P 2
6 (x) = − 1

181(325x + 66x6− 5x11).

TheseP kν (x) polynomials define a (modulox15−16x10−57x5+1) one-variableSU(5)2
polynomial ring.

Similarly, one can eliminatex from (25) and obtain a one-variable constraint iny:

y15− 3y10+ 3y5− 1= 0 (28)

which is equal to the characteristic equation of the fusion matrixNφ0
2
, but their eigenvalues

are degenerate.
We now extend this construction to the whole set ofSU(N)2 models. We associate the

following polynomials with each irreducible representationφkν :

P kν (x, y) =
[k/2]∑
n=0

(−1)n
(k − n)!
n!(k − 2n)!

xk−2nyn+(υ−k)/2 (29)

wherek = 0, 1, . . . , N − 1, ν = k mod 2, i.e.ν = k, k + 2, . . . ,2(N − 1)− k and [k/2]
means the largest integer less than or equal tok/2.

The identificationφkν = φN−kN+ν mod 2N gives the corresponding one-variable constraint
equations:

xN/2
N/2∏
n=1

(xN + (−1)ndN(n)) = 0 (yN/2− 1)(N+2)/2(yN/2+ 1)N/2 = 0 (30)

for the cases whenN is even, and
(N+1)/2∏
n=1

(xN − dN(n)) = 0 (yN − 1)(N+1)/2 = 0 (31)

for the cases whenN is odd. In these expressions we have introduced the numbers

d(n) = sin(nπN/(N + 2))

sin(nπ/(N + 2))
n = 1, 2, . . . ,6 N + 2

2
. (32)

Inspecting the constraint equations in the variabley we can see that the fusion matrices
Nφ0

2
are degenerate for allSU(N)2 models. It means that we cannot eliminate the variablex
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from the polynomials (29). IfN is even andN > 2, we can see from equations (30) that of
the eigenvalues of the fusion matricesNφ1

1
only zero is degenerate (N/2 times), following

that x also cannot be inverted on these rings. It means that we also cannot eliminate the
variabley from (29) and the corresponding fusion ring is represented by a polynomial ring
in two variables.

On the other hand, ifN is odd orN = 2, the eigenvalues of the fusion matricesNφ1
1

are
not degenerate andx may be inverted on the ring. We can therefore solve fory as a function
of x using the corresponding constraint equations which were reduced to (31), and the fusion
ring is faithfully represented by polynomials in one variable. For instance, the next odd-N

model isSU(7)2 for which the constraint equation isx28−64x21−157x14+1640x7+1= 0
and it is possible eliminatey from (29) using

y = 1

66 4276
(2958x23− 189 549x16− 4 653 716x9+ 5 504 583x2) (33)

and we obtain the resulting fusion ring as a polynomial ring in one variable.
At this point we can proceed to the generalization of these results by explicit

diagonalization of fusion matrices of the chiralSU(N)2 models. With each irreducible
representationφkν we associate a factored characteristic equation det(x11− Nφkν ) = 0 which
depend on the parafermionic chargeν according toN = (p/q)ν, wherep andq are mutually
coprime positive integers

(N+1)/2∏
n=1

(
xp − dpk (n)

)ν/q = 0 if p.q odd (34)

(N+1)/2∏
n=1

(
xp + (−1)ndpk (n)

)ν/q = 0 if p.q even (35)

for N odd, and(
xp − dpk (l)

)ν/2q N/2∏
n=1

(
xp − dpk (n)

)ν/q = 0 if p.q odd (36)

(
xp + (−1)ldpk (l)

)ν/2q N/2∏
n=1

(
xp + (−1)ndpk (n)

)ν/q = 0 if p.q even (37)

wherel = (N + 2)/2, for N even.
Here we have introduced a generalization of the numbersd(n) of equation (32):

dk(n) = sin(n(N + 1− k)π/(N + 2))

sin(nπ/(N + 2))

k = 0, 1, 2, . . . , N − 1 n = 1, 2, . . . ,6 N + 2

2
(38)

which satisfy the following sum rules:

di(n)dj (n) =
∑
k

(Ni)
k
j dk(n). (39)

From these numbers we observe that the characteristic polynomials of the fusion matrices
of the fields comparing the same cominimal equivalence classes have equivalent spectra of
zeros, i.e. they differ only in theZN -degeneracy of their eigenvalues which depend on of
the parafermionic charge through the relationN = pν/q.
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Therefore there are many alternative ways of constructing theSU(N)2 polynomial rings
in two-variables: take fory any field belonging to any equivalence class [φkk ]. The fusion
rules (17) give us four possibilities (at most) from which to choose the field associated with
the variablex. The corresponding constraint equations are given by equations (34)–(37). If
at least one of the fusion matrices associated withx andy is non-degenerate, it is possible
to eliminate one of variables, resulting in a polynomial ring in a single variable.

These results tell us that forN odd SU(N) possess a single-variable polynomial ring
at levelK = 2. For other values ofK, as observed by Gannon [19],SU(2) andSU(3) are
the onlySU(N) whose fusion rings at all levelsK can be represented by polynomials in
only one variable. For eachN > 3, there will be infinitely manyK for which the fusion
ring SU(N)K requires more than one variable, and infinitely many otherK for which one
variable will suffice.
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