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Abstract. Via explicit diagonalization of the chira§U (N), fusion matrices, we discuss the
possibility of representing the fusion ring of the chit®l/ (N) models, at levelk = 2, by a
polynomial ring in a single variable wheN is odd and by a polynomial ring in two variables
when N is even.

1. Introduction

Six years ago, Gepner conjectured that the fusion ring of theories wit§th&/) current
algebra is isomorphic to a ring iV — 1 variables associated with the fundamental
representations, quotiented by an ideal of constraints that derive from a potential [1].

Four years ago, Di Francesco and Zuber postulated a necessary and sufficient condition
for a one-variable polynomial ring [2]: assume that among the matiges=1,...,n,
there exists at least one, callp, with non-degenerate eigenvalues. Thus, any oier
may be diagonalized in the same basish\gsand there exists a unique polynomigl(x)

of degree at most — 1 such that its eigenvalugs’ satisfy

v =Py @
P; being given by the Lagrange interpolation formula. Therefore, dngnay be written as
N; = P;(Ny) (2

with a polynomial P;; as bothN; and N, have integral entriesP; (x) must have rational
coefficients.

Then x n matrix Ny, on the other hand, satisfies its characteristic equafion = 0,
which is also its minimal equation, @ has no degenerate eigenvalues. The constraint on
Ny is thus

P(Ny) =0 ®3)

that may of course be integrated to yield a ‘potentidf(x), which is a polynomial of
degreen + 1. In this way, Di Francesco and Zuber characterized the rational conformal
field theories (RCFTs) which have a description in terms of a fusion potential in one variable.
Moreover, they have also proposed a generalized potential to describe other theories. In [3]
Aharony determined a simple criterion for a generalized description of RCFTs by fusion
potentials in more than one variable.

In this paper we tackle this problem and discuss the possibility of representing the fusion
rings of the chiralSU(N), models by polynomial rings in two variables. Exploiting the
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Di Francesco and Zuber condition, we show that these polynomial rings in two variables
are reduced to polynomial rings in a single variable in the cases for wkich odd (or
N =2).

In section 2 we discuss some algebraic setting of the chiral RCFTs. Section 3 describes
the primary fields of the chira$U (N) models, at levelk = 2, in cominimal equivalence
classes In section 4 we report a computer study which diagonalizes the fusion matrices of
the chiral SU (N), models and gives their polynomial rings in one and two variables.

2. Fusion algebras

Fusion algebras are found to play an important role in the study of RCFTs. In addition,
the fusion rules can be expressed in terms of the unitary métfd& which encodes the
modular transformations of the characters of the RCFT

Sit
Nk = § 28 SE. (4)
j 1 Sor IRkl

Here ‘O’ refers to the identity operator, and the labeéls..,! run over n values
corresponding to the primary fields of the chiral algebra of the RCFT. There is a more
fundamental reason for seeking representations of the fusion algebra, based on the concept
of operator products [6]. When one tries to compute the operator product coefficients, one
is almost inevitably led to the concept of fusion rules, i.e. the formal products

AiAj =) NEA ®)
k

of primary fields describing the basis-independent content of the operator product algebra.
By definition, the fusion rule coefficients possess the property of integriﬁfjt;e Z>0.
In addition, they inherit several simple properties:
e symmetry Nf; = NJ,
e associativity Y, NNy = Y, NjNJj, | |
o existence of unitthere is an index ‘0’ (identity operator) such thif, = §/, and
charge conjugation N;;; = Y_, NS;Cu = (N},)' is completely symmetric in the indices
i, j 1.
Because of these properties, one can interpret the fusion rule coefficients as the structure
constants of a commutative associative ring with a basis given by the primary fields.
The matrix S implements the modular transformatien— —1/t and obeysS? = C.
In addition, the diagonal matrif;; = exp2iz(A; — c¢/24)), where A; is the conformal
dimension of the primary field and ¢ is the central charge, implements the modular
transformationt — t + 1 and obeys(ST)® = C, which implies a relation between the
structure constantsl{‘j and the conformal dimensions; [7]:

Nijkl(Ai + A_,' + Ak + Al) = Z Nijkerr (6)

where
Niju = N[;N;, and Nijkir = N{; Ny + Njp Nity + NjNjuy - (7)

It was suggested in [8] that these proprieties fully characterize a RCFT, and that any
commutative ring satisfying these properties is the fusion ring of some RCFT.
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The matricesV; defined by(N;)jx = Nl."j themselves form a trivial representation of the
fusion algebra

NiN; =Y NEN, (8)
k
as follows from unitarity of the matrixS; this expresses the associativity property of the

algebra (5). The relation (4) implies that the matfixdiagonalizes the matrices; and
their eigenvalues are of the form

S:
) il
Vi = o (9)
Sor
and obey the sum rules
n_da 1
Vi()yj() _ ZNil}Vk()' (10)
k

The general study of these fusion algebras and their classification have been the object
of much work [8-10].
The numbers
-0 _ Sio
di =, So
appear as statistical dimensions of superselection sectors [12, 13] in algebraic quantum
field theory, as square roots of indices for inclusions of von Neumann algebras [14], as
relative sizes of highest weight modules of chiral symmetry algebras in conformal field
theory [4], and in connection with truncated tensor products of quantum groups (see [15]
for an accomplished review). According to equation (10), these numbers obey the statistical
dimension sum rules

did; =) Nf:dy. (12)
k

(11)

which shows that/; is a Frobenius eigenvalue of;.

3. SU(IN), cominimal equivalence classes

At the level K = 2 the central charge of the chirSlU (N) models is given by
2(N -1

- N+2
and their primary fields are identified with the order fielgs k = 0,1,..., N — 1; Zy-
neutral fieldss”, j = 1,2, ... < N/2 and the parafermionic currenig, k =1,..., N—1,
in the Zamolodchikov—Fateev parafermionic theories [16]. For each primary field we define
a ‘charge’v = 0,1,...,2(N —1) mod 2N and we collect theV(N + 1)/2 primary
fields in N cominimal equivalence classg¢$7], [¢f], k = 0,1,..., N — 1, according to
their statistical dimensions:

k—1 .
s(N —1) . X7
d, = _ K = Sin
! 11) s(i+1) o (N+2)
do=1 dy_i = dy k=1,2...,N—1 (14)

SU(N), representations of the order fields, k = 1,...,N — 1 are the fully
antisymmetric Young tableaux with boxes (i.e. the reduced tableau which is a column
with k boxes). Tableaux of fields comprising a cominimal equivalence ¢ass which

(13)
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the representatiogp) appears(v = k mod 2, ie.v = k,k+2,...,2N —2—k), are
obtained by addingv — k)/2 rows of width 2 to the top of the reduced tableauqx}gf
Thereforeg’ is a Young tableau of two columns withboxes, sincev + k)/2 boxes in the
first column and(v — k)/2 in the second column.

The conformal weights of the fields comprising a cominimal equivalence class in which
the representatiosf appears are simply related to the conformal weighpoby

—k
A=A PR oN —y i 15
v k + AN ( v ) ( )
and the conformal dimensions of the order fields [16] are given by
k(N — k)
A= 2 16
KT 2NN +2) (10)

These equivalence classes are generatethibygymmetry, connecting the representations
belonging to each class through the fusion rules [18]:

min(ky +kz, 2N —ky —k2)

k k 2 k
¢Ui X ¢U22 = ¢V1+V2 N (17)
k=|k1—kp|mod 2

In particular, the elementary fiel!, (¢ x ¢* = ¢* .1 + ¢*T]) connects the equivalence
class ofg! with adjacent classes, while the field, (¢3 x ¢¥ = ¢F, ), connects the fields

in the same cominimal equivalence class. Thus,%b&N), fusion ring can be generated
by these two fields. For example, the 10 primary fieldsf(4), can be collected in four

cominimal equivalence classes as

5 A - dy =13
\ . (18)
o1 93 ¢ - di=g
/ 7N
0 3 ¢4 ¢g — do=13)

These cominimal equivalence classes provide a representation @f, ttgmmetry and the
primary fields corresponding to representations in the same class differ only by free fields.

4. SU(N), polynomial rings

Let us start by considering the caS¥& (4), (the SU (2), andSU (3), cases were considered
in [2]).

The variablest and y are associated with the fieldst and ¢9, respectively. Using
¢8 =1, the fusion rules (17) (see equation (18)) give the expressions of the other fields:

¢ =1 ¢1=x ¢ =x2—y ¢3 = x%y — 2xy
PI=y ¢3 = xy ¢F = x%y — y?

¢ =" ¢i=uxy?

P =y

(19)
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and from the identificatiopp* = ¢Z‘;’; mod 8 we obtain the following constraints:

Xt =3Py +y?2=1 x3y —2xy? =x

2y =y=x—y APy =x)? (20)
yi=1

These constraints can be combined and reduced to a one-variable constraint
x0—8x°—9x?=0 (21)

which is equal to the characteristic equation of the fusion mafgjgg and its eigenvalue 0
is doubly degenerate, implying thatmay not be inverted on the ring. Similarly, one can
eliminatex from (20) and obtain a one-variable constraintyin
10—y -2y 4 2y* +y2-1=0 (22)

which is equal to the characteristic equation of the fusion mavggg whose eigenvalues
are degenerate. Thus, the fusion ring of $#&(4), model can be expressed in terms of two
variables associated with the representat't@andd@ which satisfy independent constraint
equations.

Next, let us consider the 15 primary fields of the chifdl(5), model which can be
collected in five cominimal equivalence classes as

?4 - A=
7N
3 3 - dg=13
N SN
95 A b8 - d=% 1. (23
SN N N
¢ 3 2 7 - di=33
SN /N /N SN
%9 92 92 92 9 — do=33

The variables: andy are associated with the fieldg and$?, respectively. Usingd = 1,
the fusion rules (17) give the expressions for the other fields:

¢ =1 ¢1 =x i = x%y — y?

¢ =y ¢3 = xy ¢ = x2y% — y°

P =y pi=x)" ¢3 = x% — 2xy (24)
¢e=2"  ¢7=x)° ¢5 = 2%y — 2x)?

g =y" i=x"—y  $i=x"—Ty+)?

and the identification! = ¢§;§ mod 10 gives us the following constraint equations:
x®— a3y +3xy? =1 x2y3 —yt =x% - 2xy
xty —3x%y? +y3=x x* —3x2y 4+ y? = xy* (25)

PENCINY PN S Y5 =1
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These constraints can be combined and reduced to a one-variable constraint equation
xP 16— 57x°+1=0 (26)

which is equal to the characteristic equation of the fusion mavg;g whose eigenvalues
are non-degenerate. It means thanay be inverted on the ring: we can eliminatérom
the constraint equations (25) as

y = 5 (=142 4 2217 4 910¢%). (27)
Substituting this value of in (24) we will obtain a polynomial ring in a single variable:
Pd(x)=1 Plix)=x
PY(x) = 15,(91Q¢% + 221x" — 14x1?) P(x) = 15(910¢% + 221x8 — 14x13)
PQ(x) = 15 (4592c* + 1260c° — 79x™4) P (x) = 15,(79+ 8%5 — 4x19)
PQ(x) = 15;(404x 4 155¢6 — 9x1?) P}(x) = 15 (404x? + 155¢7 — 9x1?)
P(x) = 15,(2043c3 + 597x® — 37x13) P3(x) = — 3, (1639%3 + 4428 — 28¢13)
PZ(x) = — 537 (T2%2 + 221x7 — 14x1?) P3(x) = —3;(144+ 66x° — 5x10)

PZ(x) = —3;(3682c* 4+ 10399 — 65¢4) P} (x) = 15,(2043c* + 597x° — 37x1%)
PZ(x) = —3;(325¢ + 66x¢® — Bx™h).
TheseP*(x) polynomials define a (module®® — 16x1°—57x°+ 1) one-variableSU (5),
polynomial ring.
Similarly, one can eliminate from (25) and obtain a one-variable constraintyin
yP -3y 43y°-1=0 (28)

which is equal to the characteristic equation of the fusion m:ﬂg,igg but their eigenvalues
are degenerate.

We now extend this construction to the whole sefS6f(N), models. We associate the
following polynomials with each irreducible representatiffp

& k—m! )
Pf(x, y) — Z(—l)nmxk7 yﬂ+(U7k)/ (29)
n=0 ' '

wherek =0,1,...,N—1, v=kmod 2,i.ev=kk+2,...,2(N—1) —k and /2]
means the largest integer less than or equal/th

The identificationp! = qu;’; mod 2N gives the corresponding one-variable constraint
equations:

NJ2
XN/Z l—[(xN + (_1)ndN(n)) -0 (yN/Z _ 1)(N+2)/2(yN/2 + 1)N/2 -0 (30)
n=1
for the cases whew is even, and
(N+1)/2
[] «"=a"my=0  V-D™P2=0 (31)
n=1

for the cases whew is odd. In these expressions we have introduced the numbers

_sin(ar N/(N + 2)) N+2

d(n) = St [ 1 2) =L2...< 5" (32)

Inspecting the constraint equations in the variablge can see that the fusion matrices
Ny are degenerate for a§lU (N), models. It means that we cannot eliminate the variable
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from the polynomials (29). IV is even andV > 2, we can see from equations (30) that of
the eigenvalues of the fusion matricb’% only zero is degenerateV(/2 times), following
that x also cannot be inverted on these rings. It means that we also cannot eliminate the
variabley from (29) and the corresponding fusion ring is represented by a polynomial ring
in two variables.

On the other hand, iV is odd orN = 2, the eigenvalues of the fusion matricég are
not degenerate andmay be inverted on the ring. We can therefore solveyfas a function
of x using the corresponding constraint equations which were reduced to (31), and the fusion
ring is faithfully represented by polynomials in one variable. For instance, the nexvodd-
model isSU (7), for which the constraint equation ig® — 64x2* — 157144+ 1640’ +1 =0
and it is possible eliminatge from (29) using

1
y = WG@%&B — 189 5491 — 4 653 716° 4+ 5 504 583%)  (33)

and we obtain the resulting fusion ring as a polynomial ring in one variable.

At this point we can proceed to the generalization of these results by explicit
diagonalization of fusion matrices of the chir&lU(N), models. With each irreducible
representatiop* we associate a factored characteristic equatiotrdet Ng:) = 0 which
depend on the parafermionic changaccording tav = (p/q)v, wherep andq are mutually
coprime positive integers

(N+1)/2
[T " —afm)"" =0 if p.g odd (34)

n=1

(N+1)/2
[T "+ 0rdfm)’ =0 if p.g even (35)
n=1

for N odd, and

N/2
(x? —af )" T] (" —df )" =0 if p.g odd (36)
n=1

N/2
( + (=7 )" T] (" + (~1df )" =0 if p.g even (37)

n=1

wherel = (N + 2)/2, for N even.
Here we have introduced a generalization of the numbér$ of equation (32):

sin(N +1—k)r/(N +2)

d =
k() sin(z/(N + 2))
2
k=012.. N—-1 n=1,2,...,<N;_ (38)
which satisfy the following sum rules:
d;(n)d;(n) =Y " (Ni)sdi (). (39)
k

From these numbers we observe that the characteristic polynomials of the fusion matrices
of the fields comparing the same cominimal equivalence classes have equivalent spectra of
zeros, i.e. they differ only in th&y-degeneracy of their eigenvalues which depend on of
the parafermionic charge through the relatign= pv/q.
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Therefore there are many alternative ways of constructing thev), polynomial rings
in two-variables: take foy any field belonging to any equivalence cla$§][ The fusion
rules (17) give us four possibilities (at most) from which to choose the field associated with
the variablex. The corresponding constraint equations are given by equations (34)—(37). If
at least one of the fusion matrices associated witdnd y is non-degenerate, it is possible
to eliminate one of variables, resulting in a polynomial ring in a single variable.

These results tell us that fa¥ odd SU(N) possess a single-variable polynomial ring
at level K = 2. For other values oK, as observed by Gannon [19{/(2) and SU (3) are
the only SU(N) whose fusion rings at all level& can be represented by polynomials in
only one variable. For eacN > 3, there will be infinitely manyk for which the fusion
ring SU(N)k requires more than one variable, and infinitely many otkieior which one
variable will suffice.
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